Tech Update: Electronic Stability Control

Tech Update: Electronic Stability Control

Electronic stability control (ESC) was introduced in 1995 and touted as the second most important advancement in auto safety, after seat belts, becoming standard equipment on every 2012 passenger vehicle. ESC is supposed to help drivers maintain safe control of their vehicles and prevent accidents. However, it's the tires that determine the effectiveness of ESC for every vehicle.

By Skip Scherer, contributing writer

Electronic stability control (ESC) was introduced in 1995 and touted as the second most important advancement in auto safety, after seat belts, becoming standard equipment on every 2012 passenger vehicle.

ESC is supposed to help drivers maintain safe ­control of their vehicles and prevent accidents. However, it’s the tires that determine the ­effectiveness of ESC for every vehicle. Simply put, ESC is on-board computer technology that helps improve a vehicle’s steadiness on the highway by detecting and minimizing skids and maintaining steering control.

It works whether a vehicle is braking, ­accelerating or coasting by detecting understeer from front-end slides, oversteer from rear-end slides and hydroplaning. It performs in any driving condition, such as dry, wet or icy pavement, and at any speed.

In general, ESC systems monitor a vehicle’s ­stability 25 times per second to detect imminent skidding. It uses sensor signals that compare the intended direction in which the driver wants the vehicle to move, with the vehicle’s actual direction. If there is a ­discrepancy, the system makes adjustments to help prevent skidding and keep the vehicle on its planned path.

During normal driving, ESC works in the background and continuously monitors steering and vehicle direction. The driver’s intentions are ­determined through the measured steering wheel angle. The actual direction is determined by measured lateral acceleration, yaw or vehicle ­rotation, and each wheel’s road speed.

When a loss of steering control is detected, ESC automatically — and in the blink of an eye — uses the ­vehicle’s braking system to correct its path, literally steering the vehicle back on course. Braking is automatically applied to individual wheels. 

For example, braking a front wheel on the outside of a skid would counter oversteer, while braking an inner rear wheel would counter ­understeer. Some systems combine select braking with reduced engine power to help regain control of a vehicle.

The corrections happen so quickly that without a dashboard warning light, the driver might not know the vehicle’s on-board controls just helped avoid a potentially serious accident and injuries.

 

SAFETY STATISTICS

ESC and ABS are not the same thing. ABS prevents wheel lockup during braking. Speed sensors on a vehicle’s wheels detect developing problems and the on-board control unit sends signals that pump the brakes rapidly to prevent individual wheels from locking.

Every year ABS/ESC hydraulic control units get smaller and lighter. They are also becoming more functional with the ability to connect with more sensors to add features like automatic braking, adaptive cruise control and even regenerative braking control for hybrids.

NHTSA concluded that ESC ­reduces passenger car crashes by 35% and SUV crashes by 63%. It also determined that ESC was ­effective in reducing accidents of single vehicles that ran off the roadway and rolled over or struck a stationary object.

A similar study by the Insurance Institute for Highway Safety reported that ESC prevents 56% of fatal single-vehicle crashes and almost 80% of fatal single-vehicle rollovers.

 

THE ROLE OF TIRESWhen a loss of steering control is detected, ESC automatically -- and in the blink of an eye -- uses the vehicle's braking system to correct its path, literally steering the vehicle back on course.

In spite of all the high-tech ­electronics controlling a vehicle’s handling capabilities and stability, its four tires provide the contact points on a roadway’s surface that ultimately control the amount of slipping and sliding that can take place. ESC is only as good as the available traction. 

So, what do tire manufacturers consider when designing a tire that taps into ESC’s full potential? A spokesperson for one of the three largest tire companies, who asked not to be identified, said there is no special consideration given to ESC when tires are being developed.

At first, the response may seem surprising. However, tire dealers know that properly designed tires provide optimal traction for specific vehicles. A car’s design, weight, center of gravity, speed, direction and many other traits, as well as road conditions, add up to its overall balance, while the tires contribute to the vehicle’s overall ­stability.

Since ESC is safety technology and not a ­performance enhancement, it can’t improve on ­traction attributes already built into a tire. ESC ­doesn’t improve the inherent traction of tires, but good tires can maximize the safety maneuvers provided by ESC, such as better-controlled ­cornering.

The conclusion: ESC can only work when traction is available. Bald tires render ESC ineffective in rain. Likewise, hard tire compounds render ESC almost ­useless on ice.

A technician’s role in maintaining a fully functioning ESC starts with understanding the technology and educating his or her customers. ­Informing drivers about proper tire maintenance, as well as using appropriate tires for the winter ­season, ensures that on-board ESC, ABS and Traction Control technology improve the safety of the driver and others. Consistent tire wear is important to ESC’s complex electronics. Conflicting tire diameters and air pressures can fool the sensors.

Technicians must know if a vehicle that has ­undergone wheel alignment service requires its ESC steering angle sensor to be reset or not. ­Failure to perform an OEM’s required SAS reset procedure after an alignment could create ESC ­performance issues.  

 

 

You May Also Like

ZF Expands SACHS CDC Shock Line for U.S., Canada

The release expands ZF’s line by more than 70% reflecting growing demand for advanced damping technology in the aftermarket.

ZF Aftermarket announced the launch of 33 new part numbers in March for SACHS Continuous Damping Control (CDC) shock absorbers for approximately 1.6 million passenger vehicles in operation in the U.S. and Canada (USC). The new products expand ZF’s line of SACHS CDC shock absorbers by more than 70 percent, reflecting growing demand for advanced damping technology in the aftermarket, according to ZF.

Servicing Mercedes-Benz AMG Brakes

Take a look at some of the things you need to know in order to service the brakes on a Mercedes-Benz AMG vehicle.

AUDI Outside Air Temperature Readings

Incorrect readings can be avoided.

Mercedes-Benz ABC Suspensions

The system provides great ride & handling, but it can be complicated to service if you do not have the right training.

Audi TFSI/FSI: Oil Consumption And Carbon Buildup

Technical Service Bulletins can be valuable in helping solve vehicle problems. But sometimes, it takes multiple TSBs to find a pattern failure or the “root cause” of a problem. In the case of the Audi/VW 2.0L Fuel Stratified Injection (FSI) engine introduced in 2006, three problems related to engine carbon and fuel issues are connected

Other Posts

Don’t Miss The April Digital Edition of ShopOwner

The April issue includes technical and management content and is free to download.

Philips Announces Xperion 6000 LED Under Hood Work Light

It features a motion detection switch that allows mechanics to turn the light on and off with a wave of their hand.

Snap-on Announces Latest Software Release

The latest software includes new coverage, guided component tests and features.

Continental Tire Opens Retread Solutions Center in South Carolina

The company said it hopes to uncover new improvements and technologies to innovate the retread process.