Nivomat Shocks: Mechanical Load Leveling

Nivomat Shocks: Mechanical Load Leveling

Since Nivomat is mechanical, the vehicle needs to be moving before the pump starts to work.

Nivomat is a contraction of two French words, “niveau” and “automatique.” When translated to English, it means level automatic or automatic level.

The system makes use of the mechanical energy which is generated during the first feet of driving from the relative movement between the axle and vehicle body.

The Nivomat system does more than just level the vehicle under load. As the load increases, the pressure inside the shock increases as oil is displaced from the reservoir to the inside of the unit, compressing the gas volume. This creates a progressive increase in spring rate and damping with little or no change to ride frequency.

What gives the shock its leveling capability is a pump mechanism and oil reservoir that can increase the accumulator pressure, which increases the shocks lifting capability. It is used in combination with springs matched to the load capacity of the shock to reduce suspension travel while utilizing more of the piston and shaft travel of the shock. 

The accumulator can be a diaphragm or piston type. The normal pressure contained within the accumulator ranges from 20 bar (290 psi) to 50 bar (725 psi). The pump can increase the accumulator pressure from 90 bar (1305 psi to 130 bar (1885 psi). Under driving conditions, pressure can reach 350 bar (4,424 psi). 

The Nivomat shaft and piston provide the same damping as a normal monotube shock. The difference is that the shaft is hollow and contains the pump mechanism. The pump is operated by the displacement of oil caused by the movement of the shaft in and out of the shock. When the piston shaft moves out of the shock, oil is drawn from the low-pressure oil reservoir through the hollow pump rod and inlet valve into the pump chamber. 

Since Nivomat is mechanical, the vehicle needs to be moving before the pump starts to work and it takes about a mile to a mile-and-a-half of travel before the vehicle reaches its optimal level point.  iC

You May Also Like

Top 10 Brake Mistakes

Here are the top 10 brake mistakes technicians can make.

1. Not cleaning the brake slides and hardware: Just slapping new pads and abutment clips where the old ones once resided never works. The caliper bracket slides need to be clean and free from rust. Don’t get overly aggressive with the wire brush. Some automakers are using anti-corrosion coatings and surface treatment on the brake caliper bracket lands. If brake cleaner and a nylon brush can’t tackle the deposits, you might be making the corrosion worse by using a wire wheel or file.  

Fine-Tuning Your Wheel Balancing Process

The first step to a smooth ride and well-balanced tire has nothing to do with the balancer.

Drilled and Slotted Rotors

There’s real science behind the location of holes, slots and grooves in today’s brake rotors. Plus, they look great too.

Laying Out Your Shop for ADAS/EV Repairs

With so many vehicles equipped with some form of ADAS, rethinking your electronics layout or plan might be in order.

Air Ride Suspension Diagnostics

The key to understanding the embedded logic of air ride systems is using service information.

Other Posts

Mercedes Airmatic Suspensions

Diagnostic tips to aid your repair efforts.

TPMS Curve Balls for European Vehicles

You May Think You Know the Cause of a TPMS Problem, Until One Car Defies It Related Articles – CVT Transmission Service – Chassis – Ride Control Diagnostics From Tire Wear – Charging For TPMS Service When you think you know everything about tire pressure monitoring systems (TPMS), there will be a car or truck

CVT Transmission Service

Like any automatic transmission, the condition and level of fluid in a CVT unit will determine the performance.

Chassis – Ride Control Diagnostics From Tire Wear

Learning how to read the tire and communicate your findings is the key to ride control.