Connect with us

Audi/ Volkswagen

Turbo Cooling: The Real Reason Turbochargers Are Back

Turbochargers have made a comeback. In 2010, only 5 percent of vehicles sold in the U.S. were turbocharged. By 2017, almost 28 percent of cars and trucks sold were turbocharged. How did they do it?

Advertisement

In the 1980s, it was not uncommon for a turbocharger on some vehicles to last only 30,000 to 40,000 miles. The failures were almost always in the center section and caused by the lack of oil to cool and lubricate the bearings and shaft.

Advertisement
Click Here to Read More
Advertisement

The lack of oil was caused by carbon deposits in the lines and passages. The biggest part of the problem was deposits formed when the engine was off and the turbo was heat soaked.

When an engine stops turning, the oilflowing to the turbocharger stops. The oil inside the turbocharger might drain out of the center section through the return line. The remaining oil in the center section is heated to the point where it is turned to carbon deposits. Carbon deposits can obstruct the passages that carry oil to the turbine shaft and bearings.

By the early 1990s, many import car and truck manufacturers stopped using turbochargers on their engines. Many replaced turbocharged four-cylinder engines with larger displacement V6 and V8 engines. Why? Automakers had enough of rising warranty costs. Also, consumers began to associate turbochargers with trouble.

25 years later, turbochargers have made a comeback. In 2010, only 5 percent of vehicles sold in the U.S. were turbocharged. By 2017, almost 28 percent of cars and trucks sold were turbocharged. How did they do it? First, automakers do not advertise models are turbocharged in brochures or with a badge on the trunk lid. Instead, they call the engines “Eco” or put a “T” in the engine’s name. Second, they have developed ways to cool the turbo after the engine is shut down to alleviate heat soak.

OIL AS A COOLANT

When the engine is running, the oil is a coolant that draws heat
out of the turbocharger. But, for the oil to cool the turbo, it must flow. Restrictions in the oil feed or return lines can cause the turbocharger to operate hotter than normal.

The most common restriction for turbochargers are not
blockages in the feed line, but elevated crankcase pressure.
The return line on most engines is plumbed into or above the
oil pan. If crankcase pressures are high due to blow-by or a restricted PCV system, the oil coming from the turbocharger will have to overcome the pressure to drain into the oil pan. This pressure can limit theflow of oil to cool the turbocharger.

Advertisement

Oil that is certified by an OEM for its turbocharged engines can handle the heat. NOACK testing is performed by heating the oil to 250˚C for one hour under a constant  ow of air. The oil is weighed before and after the test. When oil evaporates, it leaves behind carbon and sludge that can damage the turbo and engine. The lower the NOACK number means less oil has evaporated. Also, some manufacturers might give a “ ash point” temperature for the oil. This number is the temperature at which the oil evaporates when exposed to heat. For turbocharged engines, the higher the flash point means it will not break down when pumped through the hot center section.

ENGINE COOLANT AS
TURBO COOLANT

If you were to listen to an Audi, Fiat or BMW when the driver walks away, you might hear a faint buzzing noise. This noise is an electric pump circulating engine coolant through the turbocharger’s center section for 2 to
15 minutes after the engine stops turning.

The circulating coolant helps to cool the turbocharger. Most pumps will free spin when the engine is running and engage when the engine is shut off.

The run time and speed of the pump is determined by many factors. Most systems look at the coolant temperature of the engine using sensors mounted in the head, block and radiator. Once a sufficient drop in temperatures is measured, the pump will be shut off. Some systems will also look at previous calculated load and throttle position before the key
was removed from the ignition to determine cooling pump run
times.

Advertisement

Many engine management systems look at battery voltage to determine how long the pump can run to cool the turbocharger. Most sophisticated systems use the battery life monitor that measures the current draw
through the positive battery cable. Most systems will prioritize cranking and starting the engine over cooling the turbocharger in situations where the battery is marginal.

When selecting a battery, it is still critical that the cold cranking amps match, but it is vital the reserve capacity (RC) of the new battery meets or exceeds the specifications of the original battery. The reserve capacity of a battery is listed in minutes and is measured by charging a battery at 80°F and applying a 25 amps load. When the battery drops below 10.5 volts, the test is complete. Turbocharged applications need more reserve capacity in the battery due to higher key-off battery loads.

It is estimated that by 2022, 50% or more of vehicles sold in the U.S. will have one or more turbochargers under the hood. But, today there are significant numbers of import vehicles on the roads that are turbocharged and need service. Some of the fixes do not involve replacing the turbocharger, but the support components that keep it healthy.

Advertisement
Click to comment

Drivetrain: Diagnostic Test Drive

Volkswagen TPMS Tips

Audi Stop/Start Systems

Audi Tech Tip: Droning Noise From Engine Compartment

Advertisement

POPULAR POSTS

Audi engine timing chain Audi engine timing chain

Audi/ Volkswagen

Audi Engine Timing Chain Failure Due to Lack of Maintenance

Tech Tip: BMW ELV Won’t Release – No Start, No Crank

Audi/ Volkswagen

ZF 8-Speed Transmission Replacement

Tech Tip: Hyundai Check Engine Light Diagnostics

Connect