Artificial Intelligence Teaching Vehicles How To Drive

Learning On The Job: How Artificial Intelligence Is Teaching Vehicles How To Drive

Artificial intelligence, or machine learning, is one of the hottest topics in the tech industry right now, and it is certainly spilling over into the automotive world.

Artificial intelligence, or machine learning, is one of the hottest topics in the tech industry right now, and it is certainly spilling over into the automotive world. If the idea of artificial intelligence brings to mind Sarah Connor running from a huge A.I. cyborg who would later become California’s governor, don’t feel alone. Many individuals have trepidation about machines that are getting smarter at an exponential rate and are being taught how to think for themselves.

If we look at this situation in a different light, machine learning is experiential computer programming. In a vehicle, we have tons of sensors that simulate human senses in one way or another. We also have controls and inputs that now have sensors — like steering angle, brake pedal pressure, cameras and other biometric sensors — that are designed to watch and see if we may be tired, stressed or experiencing road rage.

With all of these sensors influencing the way we drive, it seems only logical that we could take these inputs, record them and analyze situational awareness, road conditions and the time of day to gather information on how human drivers react to variables encountered on the road. In this way, the vehicle could learn how to drive well from good drivers and know which situations to avoid from bad drivers. The desired outcome would be to reduce crashes, or at the very least, reduce the severity of crashes.

If all of this learning occurred inside of a closed ecosystem (e.g., the sample size of a single vehicle), it would not be very effective. Imagine what would happen if you had a whole family of bad drivers the vehicle was learning from? In this scenario, how would the impressionable new car ever learn to make it in this big-bad world if there were no good drivers to teach it how to successfully navigate the road?

Cue Big Data. Still some years off, faster mobile services like 5G will have exponentially higher bandwidth to handle what some experts suggest could be 15,000 data points, or PIDS, that vehicles have to contend with. The result would be a car that generates around a terabyte of data per day. This data could then be analyzed to get us the big picture answers as to what separates good and bad driving habits. Of course, you can make the leap that in the future, autonomous vehicles will simply have this type of data pre-programmed to survive on the streets with human drivers.

In the short run, we do not have this level of Big Data available to be utilized yet. Despite the origins of V2X technology that allows vehicles to communicate with one another and receive and transmit data on dangerous road conditions, we are just beginning down the road toward machine learning. An example of this is seen with the Mercedes-Benz 2017 E Class. While this vehicle can only communicate with other such models at this point, this technology will eventually catch up to the vehicle population at large to help protect our roads.

 

 

This does not mean that the Wi-Fi or 3G and 4G systems out there currently cannot provide some help in allowing vehicles to more safely navigate our streets. It does mean that adaptive response is not on the immediate horizon.

The future of automotive A.I. can be a bit imposing to think about. But, the idea of machine learning or artificial intelligence riding along with you to learn and assist in your driving performance should be nothing new. In my case, I know I have had loved ones “helping” me to drive better for years. Now, does that classify as Level 2 Driver Assistance?

You May Also Like

Were things better when they were simpler? Probably not.  

Getting nostalgic about the good old days is easy, but many forget the struggles of the time.

Last month, I purchased a 1982 Chrysler New Yorker for $1,500. The car was previously owned by a technician who was moving to Arizona. It had 67,000 original miles. It would be my “beater with a heater” for this winter.

Under the hood is a 318 V8 with a Lean Burn feedback carburetor with a rudimentary engine control module attached to the air cleaner. The system could adjust the spark advance, change metering in the carburetor and even open a solenoid to vent the evaporative emissions from the fuel tank.

AI Hallucinations

There are three things to look for when trying to determine if AI has created an image.

Adapting To Enduring Expectations 

Where we once provided business and technical information in a monthly print magazine, we now have daily newsletters and on-call websites to help spread the message of quality service.

Do You Want The Bad News Or Good?

There are many ways you can help play the long game, and TechForce has free resources to help inspire and promote the profession.

Timeless Quotes Teach & Inspire

Here are six quotes that every shop owner should live by.

Other Posts

Toyota Regenerative Braking System

The brake system of a hybrid may have multiple components to perform regenerative braking and pedal simulation.

Mercedes-Benz ABC Suspensions

The system provides great ride & handling, but it can be complicated to service if you do not have the right training.

Audi TFSI/FSI: Oil Consumption And Carbon Buildup

Technical Service Bulletins can be valuable in helping solve vehicle problems. But sometimes, it takes multiple TSBs to find a pattern failure or the “root cause” of a problem. In the case of the Audi/VW 2.0L Fuel Stratified Injection (FSI) engine introduced in 2006, three problems related to engine carbon and fuel issues are connected

Now Available – March’s Digital Edition of ShopOwner

The March issue includes technical and management content and is free to download.