Import Coolant Confusion

Import Coolant Confusion

All-season coolant used inorganic acid technology and worked great for almost 30 years.

In the 1960s, coolant was changed twice a year. In the fall, antifreeze with ethylene glycol-based coolant was put into the engine to prevent the coolant from freezing and cracking the block when a cold front hit. Often, if the engine got hot, the antifreeze would boil off. In the spring, the engine would be drained and filled with water and maybe a small can of an anti-corrosion treatment.

Drivers who forgot to change coolants often ended up with a cracked block on the first day below 32 degrees, or an overheating problem on the first warm day. It was a major hassle for consumers and an ecological nightmare for shops. 

Later in the decade, year-around coolant with better glycol-based chemistry was invented. Lower-phosphate coolants were introduced for European vehicles. These coolants were designed for a European market where the tap water contained more trace minerals.

All-season coolant used inorganic acid technology and worked great for almost 30 years. But it had a limited lifespan of 30,000 miles. In the late 1990s, some manufacturers switched to organic acid technology that offered a longer replacement interval.

Other changes in coolants were made to protect bi-metal engines that had a cast-iron block and aluminum head. Gaskets changed to compensate for the different rates of expansion. Many switched from fiber head gaskets to multi-layer steel (MLS) head gaskets. Also, on the intake, many OEMs switched to carrier-style gaskets that used a plastic frame. Other changes in chemistry took place to reduce chemicals that could contaminate the catalytic converter, since most OEMs were on the hook for a 100,000-mile emissions warranty.

The next step was hybrid organic acid technology (HOAT) that had higher concentrations of silicates to protect the aluminum. The HOAT coolant was used by both European and Asian manufacturers. HOAT coolants meet G5, G11 and G12 specifications and may be yellow or orange in color.

The next evolution occurred around 2006 with phosphate hybrid organic acid technology (PHOAT). This technology has lower silicate levels and phosphates are used in the coolant to protect the engine. These coolants are typically for Asian makes and can have a red or blue color. 

In Europe, silicone organic acid technology (SiOAT) started to come in 2010 and newer vehicles. This typically pink coolant includes silicates in the additive package. SiOAT coolants can last between 125,000 to 150,000 miles. Many of these coolants can meet G12++, G13 and specific manufacturer formulations.

What Should You Use?

The chemistry of coolants and additive packages have changed since the first year-around coolants. Some of these changes were to increase maintenance intervals, but the majority of the advancements were in response to changing engine technologies. These changes make choosing the correct coolant difficult. 

Downgrading the coolant to a previous technology does more than change the maintenance interval. The changes in chemistry can damage gaskets and even cause contamination issues like gelling. At the same time, trying to use the latest coolant in older systems might cause issues.

What is the best solution? You can use a coolant as long as it is compatible with the manufacturer’s recommendation. This can require two pieces of information. The recommended coolant can be found in the service information or the owner’s manual. The next piece of information is the data sheet for the new coolant. Don’t trust the back of the bottle for some brands. Additional information to see if the coolant meets the requirements can be found on their websites.

There are no shortcuts, but some coolant manufacturers are getting better about formulating coolants that can meet multiple manufacturers’ specifications. 

The other piece of advice is to look at the service information for the filling and bleeding procedures. On some German SUVs with rear heater cores, starting with the removal of the petcock could make for a lengthy bleeding process. Some European vehicles might also have a cooler for the dual-clutch transmission that might require extra steps.

You May Also Like

Mercedes-Benz ABC Suspensions

The system provides great ride & handling, but it can be complicated to service if you do not have the right training.

Mercedes-Benz uses two different adjustable suspension systems in its vehicles – Airmatic and Active Body Control (ABC). Airmatic, as the name implies, is its air suspension system which we discussed back in April of this year. ABC uses hydraulic fluid at tremendous pressures to actively change the stiffness of the springs inside the shock assemblies, changing vehicle dynamics and ride height. This can be done automatically based on sensor inputs and module programming, or at the push of a button located near the shifter.

Audi TFSI/FSI: Oil Consumption And Carbon Buildup

Technical Service Bulletins can be valuable in helping solve vehicle problems. But sometimes, it takes multiple TSBs to find a pattern failure or the “root cause” of a problem. In the case of the Audi/VW 2.0L Fuel Stratified Injection (FSI) engine introduced in 2006, three problems related to engine carbon and fuel issues are connected

BMW Diagnostics: Low Airflow After Cabin Filter Replacement

Models:  F97 X3 M  F98 X4 M G01 X3 G02 X4 G20 3-Series SITUATION After replacing the microfilter during a previous service, the customer notices that the ventilation system airflow rate is noticeably less. This leads to perceived lower cooling power. The customer may also notice that external odors enter the vehicle. Related Articles –

Mercedes Ignition Coil Pack Diagnostics

Replacing a single coil might not be the best approach to curing an engine of a chronic misfire.

Volvo Modular Engine Service

The Volvo Modular Series engine outlasted Ford and was retired by Geely. The Volvo modular design that can have four, five or six cylinders made its debut in 1990 in the 960 sedan as a six-cylinder and never stopped improving. Related Articles – How To Service BMW Tire Monitor Systems – VW DSG Maintenance –

Other Posts

Understanding What Antifreeze/Coolant Actually Does

Today, each manufacturer has its own formula for best results in their vehicles. This video is part of the Group Training Academy.

Why Do Turbos Fail?

In the 1980s, it was not uncommon for a turbocharger on some European vehicles to last only 30,000 to 40,000 miles. The failures were almost always in the center section and caused by the lack of oil to cool and lubricate the bearings and shaft.  Related Articles – Air Ride Diagnostics: Reservoirs and Compressors –

Recommending the Best Brake Pads for Your Customer

As a technician, you know the importance of recommending the best brake pads possible for your customers. Often, this decision really comes down to determining which friction material is the best fit for the customer’s needs. To do this, let’s break down the differences between each of the three brake pad material types. Organic Brake

Air Ride Diagnostics: Reservoirs and Compressors

The secret to diagnosing air ride problems is knowing what criteria the system uses to regulate the compressor/reservoir and having the right tool.