Axle Torque Procedures

Axle Torque Procedures

Guessing the correct torque setting is a bad idea.

The physics of all threaded fasteners are the same. As the bolt and nut are turned, the spiral threads convert rotational force into a linear force that creates clamping loads. When a threaded fastener is tightened, it stretches. Since metal is elastic, even greater clamping loads are generated. The threads also generate friction that keeps the assembly together. This especially applies to wheel bearings and axle nuts.

Clamping forces generate preload in a bearing. Preload is a force acting on the races and rolling elements of a bearing that creates a negative internal clearance. The geometry is also known as the “angle of pressure” for the bearing. The geometry is critical to handling radial, axial and lateral loads. The size and shape of the races and rolling elements control the geometry. If the angle of pressure is not optimal, wear and play can occur. The axle nut determines how the preload is applied.

Too little or too much torque on the axle nut changes the preload and geometry. A variance of 10 ft./lbs. can mean the difference between long bearing life or a failure in a few thousand miles. Guessing the correct torque setting is a bad idea.

Even if you are dealing with Gen-2 or Gen-3 wheel bearing hub units with the preload set at the factory, axle nut torque is critical because it will hold the stub axle of the CV joint. For some European vehicles, the axle nut is replaced with a bolt that secures flanges on the axle and hub unit. This introduces another torque specification called torque-to-yield or TTY. 

With a TTY specification, you will see an initial torque specification followed by an angle in degrees. The extra step creates stretch and clamping force in a fastener. So, why do they use torque-to-yield fasteners? These fasteners can create significant clamp loads with smaller diameters and lighter fasteners. It accomplishes this by stretching the fastener using linear loads to increase friction on the threads. Torque-to-yield fasteners can be found on the bolts that secure the hub unit to the knuckle, ball joints and tie rod ends.

Depending on the application, some torque-to-yield fasteners can be used only once. Some torque-to-yield fasteners are one-time-use items because they can stretch and don’t snap back. As a result, some manufacturers will flat-out say they can’t be reused. Other manufacturers will specify that the fastener should be measured before being reused.

Lubricants on the threads can change the clamp loads and the torque specifications. For example, treating the threads with anti-seize or motor oil on an axle nut can reduce torque values by 20 to 30 percent. 

TORQUE WRENCH TECH

No matter the type or brand of torque wrench, the device is designed to measure the torque being applied to a fastener. Chances are you have a torque wrench or two in your toolbox. It probably resides in the plastic case with the warranty certificate. Ask yourself, how much do you trust your torque wrenches?

In a shop setting, your torque wrench could have been borrowed and returned to its case without being wound down to the lowest setting. Not winding down the wrench to the lowest scale before storing it leaves the mainspring compressed. This can weaken the spring and cause false readings. In addition, going to zero or past zero can affect the calibration of the wrench.

Another common problem occurs when the torque wrench is dropped on the ground. Impacts with the shop floor can damage the internal mechanisms of the wrench. While one fall from a workbench may not damage the accuracy, repeated blows can cause a calibration problem.

So, how do you determine if your torque wrench is accurate? Some tool trucks have a torque wrench tester that can help spot a torque wrench that is malfunctioning. You must test several torque settings, including the highest and lowest settings. It is not uncommon to find a wrench that will be accurate at 50 ft./lbs., but significantly inaccurate at 25 or 150 ft./lbs. If the accuracy is off, you should send it out to be calibrated rather than buy another torque wrench. Annual calibration service is recommended by most torque wrench manufacturers.

You May Also Like

Top 10 Brake Mistakes

Here are the top 10 brake mistakes technicians can make.

1. Not cleaning the brake slides and hardware: Just slapping new pads and abutment clips where the old ones once resided never works. The caliper bracket slides need to be clean and free from rust. Don’t get overly aggressive with the wire brush. Some automakers are using anti-corrosion coatings and surface treatment on the brake caliper bracket lands. If brake cleaner and a nylon brush can’t tackle the deposits, you might be making the corrosion worse by using a wire wheel or file.  

Fine-Tuning Your Wheel Balancing Process

The first step to a smooth ride and well-balanced tire has nothing to do with the balancer.

Drilled and Slotted Rotors

There’s real science behind the location of holes, slots and grooves in today’s brake rotors. Plus, they look great too.

Laying Out Your Shop for ADAS/EV Repairs

With so many vehicles equipped with some form of ADAS, rethinking your electronics layout or plan might be in order.

Air Ride Suspension Diagnostics

The key to understanding the embedded logic of air ride systems is using service information.

Other Posts

Mercedes Airmatic Suspensions

Diagnostic tips to aid your repair efforts.

TPMS Curve Balls for European Vehicles

You May Think You Know the Cause of a TPMS Problem, Until One Car Defies It Related Articles – CVT Transmission Service – Chassis – Ride Control Diagnostics From Tire Wear – Charging For TPMS Service When you think you know everything about tire pressure monitoring systems (TPMS), there will be a car or truck

CVT Transmission Service

Like any automatic transmission, the condition and level of fluid in a CVT unit will determine the performance.

Chassis – Ride Control Diagnostics From Tire Wear

Learning how to read the tire and communicate your findings is the key to ride control.